Speech feature extraction using independent component analysis
نویسندگان
چکیده
In this paper, we proposed new speech features using independent component analysis to human speeches. When independent component analysis is applied to speech signals for efficient encoding the adapted basis functions resemble Gabor-like features. Trained basis functions have some redundancies, so we select some of the basis functions by reordering method. The basis functions are almost ordered from low frequency basis vector to high frequency basis vector. And this is compatible with the fact that human speech signals have much more information on low frequency range. Those features can be used in automatic speech recognition systems and the proposed method gives much better recognition rates than conventional mel-frequency cepstral features.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملIndependent Component Analysis Applied to Feature Extraction for Robust Automatic Speech Recognition
In this article we explore Independent Component Analysis (ICA) as a statistical technique for deriving suitable data-driven representational bases for the projection of spectrum and cepstrum in the context of Automatic Speech Recognition (ASR). Based on the close link between the independent mechanisms of speech variability and the concept of statistical independence we derive a new feature tr...
متن کاملIntegrated Phoneme Subspace Method for Speech Feature Extraction
Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA), independent component analysis (ICA), and linear discriminant analysis (LDA). Furthermore, this pa...
متن کامل